Feasibility of Backcalculation Procedures Based on Dynamic FWD Response Data Project Report

نویسنده

  • George Turkiyyah
چکیده

The Falling weight deflectometer test (FWD) is a commonly used method for the evaluation of the structural performance of pavement systems. In the FWD test, a large weight is raised off the ground and dropped onto a rubber loading pad creating an impulse load representative of the real loading imposed by heavy traffic on the pavement. The excitation produced by the loading sets off waves in the pavement and underlying soil. Deflection time histories are gathered by an array of sensors placed at several nearby locations. The traditional method for interpreting the FWD data to backcalculate structural pavement properties, involves extracting the peak deflection from each displacement trace of the sensors (deflection basin) and matching it through an iterative optimization method to the deflections predicted by a static model of the pavement. This approach is computationally efficient, and when the depths of the layers are known, and their properties are largely homogeneous with depth, the procedure is effective in backcalculating layer properties. However, when the depths are uncertain or when the moduli vary within a layer, the static backcalculation scheme may not yield reliable results. The goal of this study is to investigate the feasibility and effectiveness of using the complete time history of the FWD test to overcome some of the limitations of the static backcalculation procedure, and recover pavement layer moduli distribution and thicknesses. The problem is also formulated as a numerical minimization problem, where the unknowns are the resilient moduli of thin ”computational layers” that discretize the profile. Our initial findings is that this optimization formulation regularized by constraints on the magnitude and spatial gradient of the moduli, coupled with a continuation scheme for imposing the regularization terms, can overcome the ill-posedness nature of the original optimization problem. The computational effort for solving this inverse problem, however, is very significant as it requires repeated calls to the expensive forward problem: an elastodynamic simulation in stiff heterogeneous media. Additional work is needed to speed up the forward problem to be able to perform a more comprehensive evaluation with field data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Asphalt Dynamic Modulus Master Curve Using Falling Weight Deflectometer Measurements, TR-659

The asphalt concrete (AC) dynamic modulus (|E*|) is a key design parameter in mechanistic-based pavement design methodologies such as the American Association of State Highway and Transportation Officials (AASHTO) MEPDG/Pavement-ME Design. The objective of this feasibility study was to develop frameworks for predicting the AC |E*| master curve from falling weight deflectometer (FWD) deflection-...

متن کامل

Structural evaluation of rubblized concrete pavements in Iowa

Rubblization is one of the surface preparation techniques before placing a Hot Mix Asphalt (HMA) overlay that involves breaking the Portland Cement Concrete (PCC) pavement into pieces. This paper describes the structural assessment related to the long term performance of rubblized concrete pavements in Iowa. The structural performance of seven representative in-service rubblized concrete paveme...

متن کامل

Artificial Neural Network Based Backcalculation of Conventional Flexible Pavements on Lime Stabilized Soils

Conventional flexible pavements built on lime stabilized soils (CFP-LSS) were studied for the backcalculation of pavement layer moduli from nondestructive Falling Weight Deflectometer (FWD) testing. The validated ILLI-PAVE finite element program was used in pavement structural analyses by taking into account the effects of nonlinear layer modulus behavior, i.e., stress hardening for granular ma...

متن کامل

Evaluation of the FWD Moduli of a Flexible Pavement Using Finite Element Model

This study evaluates the back calculation of stiffness of a pavement section on Interstate 40 (I-40)in New Mexico through numerical analysis. Falling Weight Deflectometer (FWD) test has been conducted on a section on I-40. Layer stiffness of the pavement has been backcalculated by a backcalculation software, ELMOD, using the FWD test data. Commercial finite element software, ABAQUS, has been us...

متن کامل

Backcalculation of Non-Linear Pavement Moduli Using Finite-Element Based Neuro-Genetic Hybrid Optimization

The determination of pavement layer stiffness is an essential step in evaluating the performance of existing road pavements and in conducting pavement design and analysis using mechanistic approaches. Over the years, several methodologies involving static, dynamic, and adaptive processes have been developed and proposed for obtaining in-situ pavement layer moduli from Falling Weight Deflectomet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005